
DESIGN NOTEBOOK • SECTION V

.. ,

SUBJ: RUNCOM • A Mat:c-o-Procedure Processor for the 636 System ·

FROM:

DATE:

1.

2.

3.

4.

5.

Louis Pouzin

April 71 1965 .

Principles

. Requirements

Composition of a

The.Meta-L~guage

·coNTENTS

,'';

:_. ., .

Making of Macro-Proced.ur~s

6. Calling a Macro-Procedure·,:

7. Expansion Mechanism

8. Optional Meta·~nguage

.. ,··

...

. -'

M-2
,,,·· ,,

M-3 ,._ .'

< ·:.·

.:,,

'. ·i

,•,_,_ .. '

··,.·. .. ' •.

.·-:

M-1

1. - Principles

1.1 - It is suggest,ed to refer to the CC-Memo 238 in order to

get acquainted with the present macro-command machinery built for the

7094 CTSS system. Indeed, most of the basic ideas are carried through

this paper as preliminary assumptions.

1.2 - Another paper describing the SHELL (636 System Design Note

book S.ection IV) explains how the most general procedure may be executed

simply by specifying its name, and the list of its arguments. Inputting

such a request is convenie11tly done from a console as a message directed

to the supervisor, or the :requests may be read from an external device,

or fr~ a file kept onto a secondary storage, like disks. Reader's know•

ledge of the SHELL description is assumed in this paper.

1.3 - Chaining requests is a normal function of the SHELL, but if

there is no limit as to th4! number of successive procedures executed in

a row, requirements are that all the actual arguments be specified some

how at the time of executic>n. In most cases, some arguments are rarely

modified, whereas some oth4!rs are usually changed for every execution.

Furthermore, many jobs may be described in terms of smaller tasks, the

sequence of which is almost invariably determined, barring a few options

or error conditions. For these reasons it is veri tempting to describe

some procedures as macro-pro'cedures, with a 1,~k~i~t~~iof fixed parameters,

and a set of substitutable arguments to be specified at execution time.

The macro-procedure is th~u given a name, stored permanently, and invoked

as if it were a single normal procedure.

A similar technique is lnmii a mandatory feature of any serious

assembly language, and its utility is no longer a point of discussion,

but rather of implementation.

1.4 - A macro-procedure machinery would then consist of the

following:

- a Meta-language intended to describe how a sequence of procedures·

is to be constructed for execution.

- a Macro-processor using the meta-langUage syatax in order to

build up the actual list of procedures to be executed, with their actual

arguments.

..

\

M-2

- a procedure initiating and controlling the execution of the

sequence so made up. This is the SHELL, outlined elsew.here.

2. - Requirements

2.1 - By assumption;, the description of a macro-procedure (say

the prototype) is fairly simple, and does not carry any sophisticated

logic. If it did, the use:r had better use some of the powerful pro

gramming languages, which ·the ACM journal is crowded with. We mean

.that the kind of logic that we may expect to describe in a macro-processor

language is voluntarily restricted to elementary options.

·2.2 - For the same reason, and as a compensation, the macro-pro

cedure should not require any debugging. Writing should be as straight•

forward as the making up of a deck for, say, an FMS job.

2.3 - In executing 1~e sequence of procedures, there should not

be any restriction arising ·from the use of the macro-processor.

2.4 - Let aside somE~ possible naming conventions, a macr~procedure ·

must provide the same facilities as a regular procedure. For example,

there should not be any reEitrictions in calling • macro-procedure from

inside another macro-procedure •.

3. - Composition of a Macro-Procedure
'•

3.1- A macro-proc~dure is a sequence of procedures described tn

a prototype. The prototypE~ is stored in a file T~tth -=~~~~-~~~~--~-(;~-~~-\

3.2- The name of the macro-procedure is the primary name of the

BCD file, or is mentioned j~ the prototype itself.

3.3 • A prototype ccmtains several classes of information.

3.3.1- Identification of formal (or substitutable) arguments

3.3.2 - Names of (macro) procedures to be gathered into a

list for execution, along wi,th their arguments •.

3.3.3 • Names of (macro) procedures to be executed immediately, ,. . . .

when encountered by the macro•processot,~ .Also '•re Specified their·

formal or actu~l a~guments.

3~3.4 - Editing control. words

..

•

M-3

\, - --· - . ---·--·"•'-.:::...--,~~--~::.~ ...

3.3.5 - Expansion· control words . ··]

3.3.6 - Comments

3.3.7- End markers

4. - The Meta-Language·

4.1 - In order to recognize the formal ar~nts of a macro

prototype1 they are all mentioned1 as spelled when used, in a header,

which can take two forms:

E.g.

or

CHAIN

MACRO

ONION POTATO

RECIPE ONION

GARLIC

POTATO

etc •••

GARL~ etc •••

Either word CHAIN or MACRO must be used as spelled. When CHAIN

is used1 the name of the proeedure is the name of the file containing

the prototype. This allows changing the name of the macro simply by

renaming the file •

. When MACRO is used, the name of the macro is the word following

inmediately MACRO, (here RECIPE). This allows searching files for a

specific macro.

AU other -words, following CHAIN or the macro name, are formal

arguments. This means that wherever POTATO e.g. is mentioned in the

prototype, (exception will be.clearly stated) it will be replaced by

whatever is specified at the same rank in the macro-call. E.g. if one
., .

calls RECIPE ONION IDAHO etc ••• ONION will not change, since the_ . ·'

actual value is identical to the formal spe"tling1 and POTATO will be,·

replaced by IDAHO.

There may be any number of formal arguments.
. I. - . . .

I
In the macro prototype1: CHAIN or MACRO must appear before any

executable procedure1 . and before any control word which controls the ·

expansion of an executable procedure. This statement .will become

clearer in the following
' ,

Only one CHAIN or MACRO can be used in a .aero prot9type1 but

;··

'

neither one is necessary if there are no formal. arguments, and if the

macro-~e is the same as the file name•·· .Ther(:~tl tu')_ argUm~11.t atibsti• ·
'' . . ~ . . ' ' . . . - . . '

tution in a CHAIN or.MAcRO heading.

~- ; .

I.

.. . ~

~;-

. '
. ,, ,.,

M-4

4.2 - The prototype contains any number of procedure requests, · ...

consisting of the procedure name followed by its. arguments. -A request·

is contained in a logical BCD record, whatever it is. But it will be

likely a string of BCD eharacters ending with a carriage return, (or

end of record mark). We assume for simplicity that the usual SCANNER

will be used, (see SHELL description) so that each procedure request

will be interpreted as a list of BCD strings, (words) separated by one

or several blank charactei'S, or tabs. Nevertheless, this point is .. ·

already treated in the SHELL description. Suffice it to say that every

procedure request is interpreted according to the delimiters conventiOns

of the system, possibly modified by private user's settings.

A request may contain any number of arguments, such as:

MAIL GEORGE MOLLY BOB ARTHUR etc •••

I, • • •• ~ ; ; .

. ·.:

.;: .. · ... ·.·
'··"

Usually the first word is the name of the procedure to be executed, · 1' ·

. and· all other words are arguments to the procedure~ But, generally speak• : . , ..

ing, any of the argumen.ts may be a meta-argument, or a special type (::# cbn• · ·' •

vent ion) as specified in the SHELL paper (paragraph . S .10 and 8). In other .

words the meaning of the whole request is not taken care of by RUNCOM, but

later on, by the SHELL at execution time. In particular, when a request

starts or ends with the meta-argument (MORE), RUNCOM.does not attempt to·.·

stick together pieces of requests with. their c~tinuationfi~t:l!~_!Pa~t~~ As

far as RUNCOM is co~ernea, every logical BCD record is processed as a

separate request. Any process based on syntax or semantics is left for

the execution phase, to the SHELL and other procedures called.

Any word of a request, regardless of whether it is a special,meta,

normal_ argument, or the. name of a procedure, is always substitutable, -if ,

it matches one of the fo~l arguments specified" with CHAIN or MACRO •. (See. ·

inhibition of this rule in 4 .. 4 .• 1). . . .• . ' .

4. 3 - Inside th·e prototyope, execution

by the single control words· (NOW) . md · ,....,,,~,

I .. '
t'· (

\.
\
\

E.g~ ...
(NOW)
EDIT AUA

PR~ AUA

GAP .£AJ3A

(LATER)

...

M-S

GAP

GAP

(NOLIST)

'> .

.. ~ ;

When RUNCOM reads the prototype, the occurence of the control

word (NOW) calls for a different expansion mode. Successive requests

are still scanned for substitution of arguments, but, instead df being

saved into a list, the SHELL is called for iumediate execution forcevery

... ,.··;

request. Furthermore, on return from the SHELL1 the actual values of the· •

formal arguments are updated with the values given by the executed prc>ce ... :;

.•.

. ·~ ' ' . ."

dure. Thus it is very easy., while eXpanding a macro, to perforai Any > _ • •. • ,

argument modification, simply by c_alling an. apprOpriAte :procedu'r4i. ·.

E.g. . ..
(NOW)
IFEQ-qALL A B

(LATER)

PR~

A, B, PR~C are formal arguments, and IFEQUAL is a procedure which gives

to PROC the value (NIL) if A is different from B; otherwise PROC is not

. altered. Runcom will substitute for PROC whatever value has been given

in the macro-call, hut this value may have been-turned into (NIL)- by

IFEQUAL. Thus when RUNCOM will transmit to the SHELL the list of actual

procedures, PROC will be either executed for its actual value, or skipped

by the SHELL :Lf it has been (NIL)ed. ·

It is important to notice that au· lbgtc :pertaining to the checking

of arguments, whether actual or formal values, is rejected from RUNCOM

\(.· .

upOn external procedu-res, which may in turn be as ,sOphisticated as desira;ble~ '•

On~ does away through that technique with the _.lwaya unsatl~factory. ·.design .. ·.·.· ·

of all conditional IF pseud~operatiotts
\ . ,' .

. >· ..
. .

. l,;
.:•::

(,\'

M-6

The mode of immediate execution stops as soon as ~e control word

· (LATER) is encountered.

Successive (NOW)'s are redundant, and have no more action; so are

successive (LATER)'s. In other wo~ds, (NOW) sets a switch, and (LATER)

~esets it; nesting has no meaning.

(NOW) and .(LATER) are recognized after argument substitution, i.e.

t~ey maz be substituted as actu~l values.

4.4 - Some·editing options are controlled.by the current permanent

options of the.user, and will be mentioned below in parag~aph 7.8. In

addition, the following is performed by RUNCOM ac~ording to the text of

the p~ototype.

4.4.1- No a~gument substitution will be performed in a request

when the fi~st cha~acte~ is ~ (minus sign). Execution is ca~ied

th~ough with the literal values as specified in the prototyp.e.

4.4.2 - A meta·a~gument ~• (apost~ophe) permits concatena ..

tion of the previous and the following arguments, after substitution •

E.g. M BER 196 • D

will come out ~OBER 1965 if M and D are formal arguments set to OCTO

and 5.

The~e may be severalosuccessive concatenation yielding a single

a~gument.

Substitution suppre.ssor arid coneatentation a~e allowed in the mode

of execution (NOW).

Apost~ophe may be substituted as actual value for a formal argu-

,., . '.

ment:, and: yet means concatenation after substi~ution wherever there is . '· ..

such a value as argument. /··
\

4.5 - Several features \control the expansion of 'the macro-prototype

so as to allow a large flexibility in cOnstructing the final list of pro-i;' •

cedures to be executed. · .. ··
•.

' ..
4.5.1 .. (SKIJ) and (STOP) are .~o';~cmtrol·;~~ords whtcii.a1low

by-passing a patt· of ·.the prototype •.. B:l.thet.·C)ne i'lll~t'.b~.'{ltng1e word.

requut. ' ;;~c~!j~t~~~ri~1!~:;f.:: ..
.. l. .. :. . ..•• ::,:. '..';.·' 'iji'.;' '·· .

~ ' \.:, .. Jt~.- :·:·: ;._::_ .,;_'). ,, i ;'.. ·::..~' . "

v ~:~_.,;:_ :. ·;;;:~\\\.:·>\/·.~. ~ .. ' ." , ..

M-7

E.g. • ••

(SKIP)

(GAP. A.LFA

(ST~P)

...
When processing the prototype, the occurence of (SKIP) inhibits both the ·

immediate execution of procedures, and the expansion of the list for later

execution. However, argument substitution and other editing functions

keep activated. The occurence of (ST~P) resumes the normal mode. Thus,

one can ignore, as far as procedure execution is concerned, an arbitrary

part of the prorotype. Since argument substitution is performed, both

(SKIP) and (STOP) may be substituted as actual values for arbitrary formal
' .

arguments. (SKIP) and (STOP) correspond to a. single switch.· Consequently

nesting has no meaning, and. ignored.'

E.g. "i ••

TESTl

sequencel

T~T2

sequenc.e2

(STOP)

•••

One may execute sequencel + sequence2 if TESTl and TEST2 are (NIL) or

(STOP) or (LATER).

·One may execute sequencel only, if TEST2 .is changed to (SKIP)

One·may execute sequence2 only, if TESTl is (SKIP) and TEST2 is (STOP)

One may execute uothing, if: TESTl is (SKIP) and TEST2 is (NIL)

Setting of TESTl and TEST2~~~y;-:i,;·-don~by substitution, or b-y-~xternal"
___ ___:._____ ' . -------------_1

procedures for which an inmediate exec;ution has been requested before

in the pro~otype.

4.5.2 - Labels may be assigned in ordet to refer symbolically to.·

various steps in the prototype. This is done through the ·c~trol 'Word

(LABEL).

E.g. • ••
• (LABEL)

•••

'.

M·B

The BCD ',string HERE is then associated with the corresponding position
L---

in the prototype of the request (LABEL) HERE.

Neither (LABEL) nor the specified value may be substituted as

actual arguments, and there must be·a minus sign heading the request.

Otherwise there would not be any label assignment, and the whole request

would be processed as anr·ordinary one. (LABEL) may not appear before

CHAIN or MACRO.

4.5.3 - By using (GOTO). one may force att tncondit:Lona~ transfer

in the prototype •.

E.g. MACRO : DOSEGMENT AUA

(NOW)

- (LABEL) AGAIN
'· EDIT A'UA GAP. ; ,.

GAP A'UA . '
IFIL AUA PROCEDURE WHERE. OK AGAIN

(GOTO) WHERE

(LABEL) OK
(LATER)

PRINT AUA GAP

In the previous example IFIL is a procedure which sets the value

of WHERE to be OK if the file AUA PROCEDURE exists, and to AGAIN if the

file does not. All these values are arguments to IFIL. A_1part-jof. the

prototype is specified as executable immediately, and depending on the

value assigned to WHERE, RUNCOM keeps processing the following of.tbe

prototype or goes back to the EDIT request.·

Since both [GOTO~i and the specified label may be substituted as

actual values of formal arguments, one may use this inconditional_trans

fer as an optional transfer to an arbitrary request. (GOTO) with no

label, or with label (NIL) has no action.

(GOTO) may not appear before CHAIN or MACRO.

4.5.4 - Although it would be possible to c~trol iterations with '
(GOTO) 's it seems desirable to have a more specific mec;ttanism ·for. the

repetition of the same sequence vith different

·. ···,

'; . ~: .
.. '.-·

. ,; < · .

E.g.

MACRO \ ASSEMBLE FIL CLASS

(LOOP)
\

CLASS \ FIL

LISTF '.FIL
I

CLASS
I

Ct.ASS FIL

(LOOP)

The sequence of requests bracketed by the (LOOP) 1 s will be

repeated several times if the formal arguments FIL and CLASS are

substituted with lists .of values, instead of single values.
,.·

For example., the macro may be called byi-" <}~.\,. .. '.>,·;

ASSEMBLY [__ (oNiONT<JMATo--~~ >}~QM.r~) .~.:.·.._.:~. ~· ._l
The expansion of the macro would edft i>uf:l~':tiJ)~1 ·, ' · • · · ..

RUN COM

LISTF ONION . GAP

·GAP ONION.
.: ,.

. .. -~

LISTF TOMATO . ALGOL

ALGOL TOMATO

LlSTF GARLIC

ALGOL GARLIC

One can understand the simple l~gic by the previous example.

Each of the formal arguments specified with the first oecurence of (LOOP)

is repl~ced by an actual value taken from the· list associated with each· :

argument. The number of iterations is equal to the number of values

specified in the longast!.iist. When a list is exhausted, the co!=~es•

ponding formal argument holds its last current value. ·

There may not be dynamically nes:ted (LOOP) 's in the same 'proto

type, but there may be as many disjointed (LOOP)'s as desired. On the

other hand, any of the procedures included in the scope of a (LOOP) may.
. ~ . ' . : . .

be a RUNCOM containing iteratiOtts, etc ••• , at any 'depth •. ·

L(LOOP~ .may_ be substitut~d. as an. ac~t:.
ment. It may not appear 'before MACRO. Ol' CRAtH1

. . . . ' . . : .· ';: ., • :.:t:;~·i:,,·;~~:lf ~ i :·· .. :• .,

, .. '

.-'
,'··-1·

... -- ..

·.,
···,:

\
\·· ...

....

'-<~

M-10

4.5.5 - Another feature turns out to be very useful when the

successive sets of arguments for a loop are too numerous. It also

permits an arrangement.of arguments whichmay be closer to the way

users have them in mind.
. I

E.g. Assuming that a user wants to repeat part of a process

wlth a series of files, say moving them to another file. directory, h,e

might write a macro as:
~ ,'

(LOOP) A B

UPDATE 3 A B

(LOOP)

...
and call the macro with two lists as:

RUNCOM • • • (ONION PEAS SALT LEMON) (GAP GAP GAP ALGOL)

/'

Each item, ONION GAP, PEAS GAP, etc ••• , is scattered through each list,

and the visual association of which goes with what may be cumbersome,

when there are many arguments and several lists requiring several lines .

to fit.

Therefore, another ·form of feeding the 1oop is available:

Successive items are stored into a file, with elass''·name BCD.

E.g. ONION GAP.

PEAS

SALT . ..
LEMON . ALGOL

• • •

Each item goes in a single logical BCD record, (lineoor whatever

it is). Instead of (LOOP) the\prototype contains:

(FILE) NAME A B •••
where NAME BCD is the name of the file containing the successive items

for the loop. A, B, c, etc ... are the forrlt8.1. arguments fo be substituted

with actual values into thelobp.

\,
\

M-11

The following rules apply for ·the substitution.

• A first loop is driven with the actual values specified

in the call to RUNCOM. If all arguments are (NIL) .or

missing the next step is directly started.

• If the file NAME BCD exists, and is not void, a logical

record is read, and each formal argume~t, as specified.

with the (FILE) control word, is replaced by the corres

ponding actual value read from the file NAME BCD. Explicitly

(NIL) values are substituted as such, but missing values

are not substituted, and the corresponding formal argument

holds its current value. Hence, one may specify them in

a hierarchical mahner so that semi-constant values are

rightmost in the file, and need be mentioned only When they

change.

- When the file is exhausted, or· if it does not exist, looping

is terminated.

The next occurence of(FlLE) without argument causes lWNCOM to jump back

to the previous (FILE) in the prototype, and to proceed with a new set

of values.

Nested (FILE)'s are not allowed.

Both (FILE) and the name of the file may be formal arguments

and substituted with actual values.

·N.B. It seems to the author that (FILE) and (LOOP) ioops could .be

nested at one level, dynamically speak~ng, but no~ all implica

tions have been examined. Therefore,

at a later step of impl~entation •
. · (':

\
.·\

M-li

4.5.6- Any request with the first character *or $ is a

comment. Comments headed by * are completely ignored and serve o~ly

as remarks that the user wants to associate with his prototype~

Comments startin~ with $ are printed on the user's console,·

(or in the MESP~T file) at the point of execution where they are

encountered.

As a matter of fact, RUNC~M replaces $ by ~\'l-.:n4me of a· procedure.;

say C~MMENT, which prints the concatenation of the BCD. strings given

as arguments.

Neither * nor $ are substitutable, but words of the td.t going ·

with $ are substitutable.

·One may use the special concatenation $- tcf mean that no sub•

stitution be performed in this comment.

* Comments may appear anywhere in the protype, but $ comments

may not appear· before CHAIN or MACR6.

· Blank requests are always ignored, and may appearr.:;anywhere.

4.5.7- The control word (END), when encountered, forces the

end of the RUNC0M processing. The list of requests created by the

expansion is closed, and the SHELL is called for execution. Thus (END)

need not be the last request in the prototype, although it is a natural

place to put it.

(END) may be substituted as actual values of a fortnal parameter.

It may appear anywhere. in the prototype, including before cHAIN or MA.d!US.

The t~'t of the prototype need be bounded in order not to run

away when reading it. Either an end of single word request

ENDMACRO may be used. /·

ENDMACR0 will ne~er be

may not be substituted. •

I .

)

1 M-13 J

5 - Making of macro-procedures

. 5.1- As we have said, the prototype is contained in a regular.·

BCD file. :consequently it can be created by any of the coamon procedUres . . ~- .

designed for handling BCD files. A _private program can do the same. :_,;' ·

Furth_ermore, all input media are suitable, either by directtyping fraa ·

·a console, or by card. reader, punched tape; ~r artY arbitrary external ... :

device.

6 - Calling a macro-procedure

6.1- A prototype is not an executable program in terms

of machine instructions. 'lherefore one cannot transfer cont~_ol to · ·.

a pro.totype. Instead, the procedure R.UNctSM is systematically invoked

as following:

RUN~M macro-name arguments . . .
Same conventions as for ariy procedure apply to a call upon

RUNctSM; in particular with respect to the arguments deliml!tex:s.

6.2 - The first argument of R.UNctSM il tJ:ie name of the macro

procedure. It is usually the name of a BCD file containing _the proto•

type. This file, if it exists, will be read by R.UNC~M,: and processed :\

according to the following rules:

6.2.1- Some executable request encountered, but no CHAIN and ,

no MACR~. Expansion is performed, .and must hit an (END) control word.·:

or the end of the file. Occurenees of CHAIN or·MACR.- cJ;'eates an

and stops the process.
' .

6.2.2 - CHAIN is encountered. Expansion is performed under

same conditions as. in 6.2.1.
I

· 6.2.3- MAC~ is encount~~ed. If thename·follawing MACR~ does

not match the one following RuNC-M, reading the file:continues until .

another CHAIN or MACRO is encountered; and thf!!:pr()ceal!i 18. recycled •.

If the names match, ~:xpanston ·is.
in 6.2. 1.

.. ·''

· .. ·,

.~; . '

;; ...

/ L __ M-14 - __ j

6.2.4 - (If the end of file is encountered before any expansion

got started, or if the BCD file does not exist), and f.£ no library is

specified (see below 6.3), an appropriate comment is printed, and RUNC~M

returns to its calling procedure, via the error return meaning: need

more arguments.

6. 3 - Libraries of macro may be specified to be searched for the

requested prototyp~, s&Duld a condition mentioned in 6.2.4 occur,

RUNC~M would then carry out the searching.

6.3.1- The ~PTIONS segment (see SHELL description may contain·

an entry MA.CLIB, which points to a list of pointers to file ·names.

successive files may·be searched in the order they appear in the user's

~PTIONS segment.

6. 3.2 - The argument list to RUNCiSM may specify some libraries

to be searched before those specified in the permanent options. The

meta-argument (MA.CLIB) followed by the name of a BCD file of macros,

is recognized by RUNCiSM, and both are st~ipped off the list of arguments

to be fed to the macro. Such a pair may occur several times in the

argument list.

6.4 - As we have already shown in 4.5.4, a single formal argument

can be replaced by a list in a (~P) scope. I£ no (I4iSP) is specified

for the particular argument, it is still possible tosubstitute'a list

where a single value is expecte~ •

E.g. MA.CR~ SPLIT A B C

SPLIT . A B C

called by RUNCiSM SPLIT AU!A GAP (f~· TWiS THREJ!!.)will: expand as: . SPLIT

AU!A GAP ~NE TW~ THREE

In other words the contents of a pair of parentheses is substituted

as is to the formal argument. It may contain any BCD string, including

inner sets of nested parentheses. The· auter· set;:oiiipf:U:entheses is removed
. . '

during the substi tilt-ton. . Meta-arguments to, lltJNCiS~~ like _(MACLIB), ~111 .

not be interpreted if embedded .in ,.,..,~"'"'

The following example

11-is

RUN~M (MA.Cl (MACLIB) MACR~S ARGl) ARG2

The result would be: MA.CR~ (N~ FOOND.

Parentheses used as delimiters for a group of arguments must

be written as separate characters, (by blanks or tabs).

6. 5 :.. It may happen that a macro procedure be called with less··

actual arguments than specified in the list of formal arguments. In

this ·case, all formal arguments for which no substitution is provided

are given explicity the value (NIL).

Needless to say, there may be automatic substitfl·tion of preset

BCD values for those arguments missin3, but this has to be ·done .th.~ough

external procedures.

E. g. ·let us. assume 'that a procedure·

works as follows

• IF. A • EQUAL. B • THEN. C=D • ELSE •.

we may build a macro .such as :

MACR~ C~MPRES A B c
· (N0W)

IF EQUAL B (NIL) B BCD

IF EQUAL c (NIL) c A c
IFEQUAL. D (NIL) . D B D

(lATER)

SQUEEZE A B c D

one may call this macro as follows:

RUNC~M c0MPRES AUA

file ALFA BCD is compressed

RUNC~M C~MPRES ALFA GAP

file AUA GAP·is

ii .

i M-16
'-----'--·-------'

RUNctSM CiSMPRES:~: AUA GAP BETA

file ALPA GAP is compressed into BE~ GAP

RUNctSM. ctSMPRES ALPA GAP BE~ GAPSQZ ..

file ALFA GAP_is c~ressed into BEtA GAPSQZ

The above exampl~ shows clearly enough th&t all desirable gllllilf.cka

are possible, as long as one prepar~l appropriate procedures. E.g.

automatic generation of· symbols, checking for gene'tated symbols, etc •••

.. . ~ .. , '

7 - Expansion mechanism

7.1- Any reader familiar with macro-assembler may already

have.gathered how RUN~M·proceeds to expand a prototype. Nevertheless,

some ~urther. information may help to understand the internal organizatt~ •

7.2 - First RUNCiSM gets its argument list from its calling

program, SHELL orother, a~d sets the names of ·the file(s) to be read .

in order to find out the prototype.. If this step succeeds, the next .. ,

step ts :--.entered.

7.3 - The prototype is read entirely until an end of file or

.... ·

an ENDMACRO is encountered. This allows building a table of labels ·

associated to pointers into the prototype. The prototype and all

necessary information are s_tored in the stack (for recursive P,roperties).

·Some syntax checking is perfo~ed during this phase, like CHAIN and MACR~

procedures.

7.4 - Then RUNCiSM starts creating requests out of the prototype, .

. the list of formal arguments, and the 1 ist of actual arguments. It

has to be understood that th:is phase-is basically dynamic. ··Switches_

(N~W)- (LATER), (SKIP).;. (STiSP) are· set a_t the tilile they are encountered, ·
. - . /· . . '• . . .· .·. . . .' .

from then and on. There is no attempt , to· assigtt a .node ·to. a a cope of
' \ ' ~ .

requests bracketed by a Switch;·
. ~ .. : \ .

·: :·

M•l7 ... ,

E. g •. (N~W)

- (lABEL) HERE ' .. ' .

. PROCl

(lATER)

PROC2

(G~T~) HERE

When expansion proceeds from the top down, PROCl is executed in the

(N~) mode, but a subsequent transfer to HERE may expand PR.,C 1 in

the (lATER) mode in the following part of the prototype.

Similarly, any (~P) occurence sets a switch whereby the

next encountered (~P) will jump back to the previous encountered

(L0~P) for another repetition with successive arguments. Use of (G~)'s

may result in inserting in the loop some parts of the prototype which

are not bracket ted (syntactically speaking) by (L0~P) 's.

In brief, the expansion phase is primarily an interpretative.

process, not a compilation.

7.5 - ~~ca- or ~nd ·of file occurence is. replaced by an· (END)

control word, SO that eventually the expansion StOpS by encountering

.. ··~ '·-.

.. ' ·•·

... r

.···.

an (END). 'the list of requests expanded by RUNCt»f is stored in the·stack;·.;; ·

and returned to the calling program at the end of the process, by a

. RETURN GAP macro-ins true tion

RETURN (@expanded _1 is t)

7.6- It should be noticed here that RUNC.,M does not start

explicitly the list of requests ready for execution. RUNC~M initiates

only those requests for which execution is requested (N~W). For that.,

it calls the SHELL. for every single request.· Since the SHELL is recur

sive, it does not matter if it were already the RUN~M's calling program.

When RUNC.,M returns with the expanded list, the calling program

is usually the SHELL, which will take care of the execution.· But .·any :

other program may call upon RUNC<fM; ·COnsldere$1 as merely a macro-expander,.

in order to get .a ready-to~use llst of. tbe·.executlon of 'Which

may be postponed arbitrarilY• · '' ···

.... ·--·

:~.-
;~ ..

'~ '~: ,·

·. ·~· . .

.. ,

•

M-18
·-- ------:---· --

7.8- RUN~M, as any other procedure, is sensitive to the user's

permanent options. In (LIST) mode, it will print a list of generated .

reques.ts, either for (N~W) or (lATER). In (DEBOO) mode it will leave- .

in the stack both the prototype and complementary info~tion1 such
: .. ,}·

as label~table, formal and actual arguments lists, etc... In (~~)

mode, it will print messages bracketing the execution:

MACR~ ·XXX . STARTED AT 1302.6

MACR~ XXX TERMINATED AT 1325.0

7.9- When the user wants an immediate execution. of· the macro

procedure, he may well specify the mode (N~W) for the ~le macro, even

if everything could be executed the same way in the mode (LATER).

Results may be identical, but the system overhead -wil_l be more important,

since RUN~M and its associated segments are to be included as-parts

of the user process through the end, instead of being released as soon

as the list has been expande~.

L~_· __ Optional Meta-Language l
8.1 - RUNC~M, as the SHELL, and as will eventually- many conmon

procedure~ use certain graphical conventions, as meta-arguments, con- - '

'·

{ ·::,,-.·

' .. , ;:'

catenation or grouping characters, control words, etc... It is certainly · .(

· desirable for doc\DD.entation, teaching and genedl understanding l?urposes, ;

to have a list of conventional graphics accepted by all users as system .

conventions. However, conventions may have to be changed, and·some

users may have unsolvable problems of compatibility with· existing con-
I • ~·

ventions. Therefore, ~t seems a necessity to provide a general way

of anticipating the problem.

8.2 - All words used as conventional nota~ions could be gathered

into a common segment; evidently users could not modify it. Whenever

a common procedure of the system needs·to refer to a partic~lar graphic,.

it would pick it up from the conmon segment through an entry name, which

can be conveniently the same as its usual contents.

E. g. (END) (MANUAL) (LIST) '*$could be entry names to. a

segment called SYSGBA.PHICS.

Users could provide their own segment to be used by a particular

. .j _.;,

--., _:.

procedure, or systematically, as a permanent awn lan&uage.-

. From the point of view of system maittte~ee,_ we would get rid of _this.\\

tedious affair of combing through program listings for chaaing wi:ted•in symbolisms.
. .,_ ' ,. .

'·. .· .. : .. , ...

